p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4⋊2D4, C22⋊2D8, C23.41D4, (C2×D8)⋊1C2, C2.4(C2×D8), C4⋊D4⋊1C2, C22⋊C8⋊3C2, C4⋊C4⋊1C22, (C2×C8)⋊1C22, C4.19(C2×D4), (C2×C4).22D4, D4⋊C4⋊4C2, C2.8C22≀C2, (C2×D4)⋊1C22, (C22×D4)⋊2C2, C2.6(C8⋊C22), (C2×C4).81C23, C22.77(C2×D4), (C22×C4).42C22, SmallGroup(64,128)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22⋊D8
G = < a,b,c,d | a2=b2=c8=d2=1, cac-1=dad=ab=ba, bc=cb, bd=db, dcd=c-1 >
Subgroups: 225 in 99 conjugacy classes, 31 normal (15 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, D4, C23, C23, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C2×D4, C2×D4, C24, C22⋊C8, D4⋊C4, C4⋊D4, C2×D8, C22×D4, C22⋊D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C22≀C2, C2×D8, C8⋊C22, C22⋊D8
Character table of C22⋊D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 2 | 2 | 4 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ16 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ18 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 5)(2 9)(3 7)(4 11)(6 13)(8 15)(10 14)(12 16)
(1 12)(2 13)(3 14)(4 15)(5 16)(6 9)(7 10)(8 11)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 16)(7 15)(8 14)
G:=sub<Sym(16)| (1,5)(2,9)(3,7)(4,11)(6,13)(8,15)(10,14)(12,16), (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,13)(2,12)(3,11)(4,10)(5,9)(6,16)(7,15)(8,14)>;
G:=Group( (1,5)(2,9)(3,7)(4,11)(6,13)(8,15)(10,14)(12,16), (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,13)(2,12)(3,11)(4,10)(5,9)(6,16)(7,15)(8,14) );
G=PermutationGroup([[(1,5),(2,9),(3,7),(4,11),(6,13),(8,15),(10,14),(12,16)], [(1,12),(2,13),(3,14),(4,15),(5,16),(6,9),(7,10),(8,11)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,16),(7,15),(8,14)]])
G:=TransitiveGroup(16,126);
C22⋊D8 is a maximal subgroup of
C23⋊D8 C4⋊C4.D4 C24.9D4 C24.103D4 C24.177D4 C24.105D4 C4○D4⋊D4 (C2×D4)⋊21D4 C42.225D4 C42.227D4 C42.232D4 C42.352C23 C42.356C23 C23⋊3D8 C24.121D4 C24.125D4 C24.127D4 C4.2+ 1+4 C4.142+ 1+4 C42.269D4 C42.271D4 C42.275D4 C42.406C23 C42.410C23 SD16⋊D4 SD16⋊7D4 SD16⋊1D4 D4×D8 SD16⋊10D4 D4⋊4D8 C42.462C23 C42.41C23 C42.53C23 C42.54C23 C42.471C23 C42.474C23 D4⋊S4
D4p⋊D4: D8⋊9D4 D8⋊5D4 D12⋊13D4 D4⋊D12 D12⋊16D4 D12⋊D4 D20⋊13D4 D4⋊D20 ...
(C2×C2p)⋊D8: (C2×C4)⋊D8 C42.221D4 C42.263D4 (C2×C6)⋊8D8 (C2×C10)⋊8D8 (C2×C14)⋊8D8 ...
C22⋊D8 is a maximal quotient of
C23⋊D8 C23.5D8 (C2×C4).5D8 D4⋊D8 Q8⋊D8 D4⋊3D8 Q8⋊3D8 D4.D8 Q8.D8 D4.7D8 D4⋊4Q16 C23.35D8 C23.37D8 C2.(C4×D8) C23.38D8 C23⋊2D8 (C2×D4)⋊Q8 C24.83D4 C4⋊C4⋊7D4 C4⋊C4⋊Q8 Q16⋊7D4 D8.9D4 Q16.8D4 D8.10D4 D8.D4 Q16.10D4 Q16.D4 D8.3D4 D8.12D4
D4p⋊D4: D8⋊7D4 D8⋊8D4 D8⋊D4 D12⋊13D4 D4⋊D12 D12⋊16D4 D12⋊D4 D20⋊13D4 ...
(C2×C2p)⋊D8: (C2×C4)⋊D8 (C2×C4)⋊9D8 (C2×C4)⋊2D8 (C2×C6)⋊8D8 (C2×C10)⋊8D8 (C2×C14)⋊8D8 ...
Matrix representation of C22⋊D8 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
14 | 3 | 0 | 0 |
14 | 14 | 0 | 0 |
0 | 0 | 0 | 16 |
0 | 0 | 16 | 0 |
14 | 14 | 0 | 0 |
14 | 3 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[14,14,0,0,3,14,0,0,0,0,0,16,0,0,16,0],[14,14,0,0,14,3,0,0,0,0,0,1,0,0,1,0] >;
C22⋊D8 in GAP, Magma, Sage, TeX
C_2^2\rtimes D_8
% in TeX
G:=Group("C2^2:D8");
// GroupNames label
G:=SmallGroup(64,128);
// by ID
G=gap.SmallGroup(64,128);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,362,963,489,117]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^8=d^2=1,c*a*c^-1=d*a*d=a*b=b*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export